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SUMMARY 

The Taylor-least squares (TLS) scheme, developed to solve the unsteady advection4iffusion equation for 
advection-dominated cases in one and two dimensions, is extended to three dimensions and applied to some 
3D examples to demonstrate its accuracy. The serendipity Hermite element is selected as an interpolation 
function on a linear hexagonal element. As a validation of the code and as a simple sensitivity analysis of the 
scheme on the different types of shape functions, the 2D example problem of the previous study is solved 
again. Four 3D problems, two with advection and two with advection+iiffusion, are also solved. The first 
two examples are advection of a steep 3D Gaussian hill in rotational flow fields. For the advection4iffusion 
problems with fairly general flow fields and diffusion tensors, analytical solutions are obtained using the ray 
method. Despite the steepness of the initial conditions, very good agreement is observed between the 
analytical and TLS solutions. 
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1. INTRODUCTION 

The transport equation for a scalar quantity c(x,  t )  can be written as 

(1) 
ac 
-+ at 

u VC = V . ( D  * VC), 

where u(x, t )  is the velocity field of an incompressible flow, D ( x )  is the diffusion tensor and V is the 
gradient operator in the global co-ordinate x = (x, y, z) which coincides with the principal axes of 
the symmetric diffusion tensor. With proper initial and boundary conditions, (1) constitutes a 
well-posed problem. 

The Taylor-least squares (TLS) finite element scheme has been developed for advection- 
dominated problems.' The scheme in conjunction with Hermite elements has been tested 
rigorously and shown to be successful in one and two dimensions using the advection-diffusion 
equation. Unlike some other schemes developed for the same class of problems, the scheme does 
not require special treatment for one-, two- and three-dimensional problems nor for the shape of 
elements. Moreover, there are no arbitrary parameters to be optimized. It was also shown that the 
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Lax-Wendroff Taylor-Galerkin method of Donea et al.' and the Crank-Nicolson least squares 
scheme of Carey and Jiang3 are special cases of the TLS scheme when linear elements are used. In 
this study the TLS scheme is applied to the three-dimensional advection4iffusion equation to 
demonstrate its straightforward application and its accuracy in example problems. 

The derivation of the TLS equation for the advection-diffusion equation is given in Reference 1 
and only a brief description will be given herein. The 3D serendipity Hermite  element^,^ specified 
on a hexahedron, are selected as a basis function. The Hermite elements, which have gradients in 
local co-ordinates, allow direct application of derivative boundary conditions without integrating 
by parts. The 3D formulation is tested against 2D and 3D problems. Since the examples in lower 
dimensions are the same reference problems that were solved by a different type of Hermite 
functions, one may see the sensitivity of the scheme on various types of shape functions. The 
results compare well with the previous results. In the absence of good 3D reference problems a few 
examples with interesting flow fields are generated. 

2. THE TAYLOR-LEAST SQUARES FORMULATION 

The formulation of the TLS equation for the advectiondiffusion equation is given elsewhere' 
and will not be explained in detail herein. The following constitutes a brief summary. 

2.1. The TLS method for the advection-diffusion equation 

the advection-diffusion equation into two parts. For the advection part 
For any finite time interval k = t"' ' - t" an operator-splitting scheme can be used to decompose 

ac 1 -+u.Vc,  =o, 
at 

with c1 (x, nk) = c(x, nk), and for the diffusion part 

ac, 
at 
- = V . ( D  * VC,), (3) 

with c,(x, nk)=c,(x, (n+ 1)k). Following the procedure given in Reference 1, the semidiscrete 
equation for the advection is obtained as 

{ 1 + [a1 u + a2(u-  V)u] V + az uu : VV} c; + ' = { 1 + [PI u + P2(u - V)u] - V + f12uu : VV} cl , (4) 

in which 

a , = e k ,  f11=-(1-8)k,  a , = - g ( L - e ) ,  2 3  P 2 = y  k2(2  3- e )  , 
where ec [0, 11 is the time-weighting factor. For time-dependent flow u"+I and u" are used in (4) 
in an obvious manner. Note that the first two terms in braces represent the standard &weighted 
discretization of the advection equation and the last two terms are higher-order corrections. On 
the other hand, the temporal discretization for the 'well-behaved' diffusion part is approximated 
by the second-order Crank-Nicolson scheme 

The two semidiscrete equations (4) and (6) are added before spatial discretization by the least 
squares scheme is performed. The intermediate variables in the resulting equation are removed by 
the definitions of the initial conditions and Taylor series expansions. The semidiscrete equation 
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for the advection4iffusion equation becomes 

dl c"+ 1 = d 2 C " ,  (7) 
where 

k 
2 

k 

d, = 1 + alu V + tlz [(us V)u] - V + az uu : VV --[V - (D -V)], 

dz = 1 + f l 1  u . V + f l z  [(u *V)U] * V + f l z  uu VV + 2 [V 6 (D * V)]. 

By using the operator-splitting scheme, one avoids the use of prohibitively higher-order shape 
functions which would have been required if the TLS scheme were applied directly to the 
advection4iffusion equation. The primary disadvantage of the operator-splitting scheme, related 
to the violation of a downstream boundary condition during advection steps, is also circum- 
vented by adding the two semidiscrete equations and solving the resulting equations using the 
least squares procedure. Fully discrete TLS equations for the advection-diffusion equation are 
obtained by equating the variation of the least squares functional for (7) to zero: 

Identifying Bc"+l as a weighting function, the above equation yields a system of algebraic 
equation when applied to elements. 

At this stage the usual practice of the popular Galerkin finite element method is to integrate (8) 
by parts. The purpose is twofold: (i) to reduce the order of the highest derivative in the integrand 
so that lower-order interpolation functions can be used; (ii) to derive boundary integrals involving 
flux terms so that derivative boundary conditions can be applied. With the least squares finite 
element method one cannot hope to reduce the order of derivatives in the integrand through 
integration by parts, since equal-order derivatives are already present in the weighting function. 
Therefore, if integration by parts were used to derive boundary integral terms, the order of the 
highest derivative in the integrand would have been increased by one. However, one does not 
have to face that penalty to apply boundary conditions involving derivatives in this case. Since 
Hermite functions are used, derivative boundary conditions can be applied explicitly by speci- 
fying proper derivative unknowns in the interpolation function. Most derivative boundary 
conditions are given in terms of normal flux and it is trivial to specify normal fluxes on a 
boundary because the derivative unknowns are in local co-ordinates. On Dirichlet boundaries, 
not only nodal unknowns of the function but also its tangential derivatives must be specified at 
the corresponding boundary nodes to have a unique function. 

3. SERENDIPITY HERMITE ELEMENT 

A complete Hermite interpolation function for an eight-node hexahedron involves 10 degrees of 
freedom per node.4 Since the additional accuracy obtained by using the complete Hermite 
element instead of a serendipity element, which has four degrees of freedom, hardly compensates 
the increase in computational expense, the serendipity Hermite element proposed in Reference 4 
(p. 143) is used. A hexahedron in global and local co-ordinates is given in Figure 1. Using repeated 
indices to indicate summation, the element can be written as 

(9) 
ac . 
8 5  

c(r, t)=ci(t)Nj(r)+'(t)Mpj(r), p =  1, 3, j =  1, 8, 
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3 

Figure 1. Hexahedral elements in (a) global and (b) local co-ordinates 

where c j  is the nodal unknown, d c j / a r ,  are components of the gradient in local co-ordinates and 
Ni and M, are shape functions in which r = ( p ,  q, r )  is a local co-ordinate vector. Note that the 
gradient in (9) is with respect to the local co-ordinate r. The basis functions are defined as follows: 

Nj(r)=--?(2+pop+qoq + r o r - p 2  -q2 - r 2 ) ,  4.  
2 

where the usual Lagrange trilinear basis function for a cube is 

4j(r)=8(1   POP)(^ + q O q ) ( l  +ror) ,  
in which ( ro ,  so, to )  is the local co-ordinate of the local node j (Figure 1). 

The specification of the basis function completes the derivation of the three-dimensional TLS 
scheme. However, the TLS formula in (8) is given in global co-ordinates and the basis function 
in (9) is given in local co-ordinates. To evaluate the integrations, it is necessary to transform the 
derivatives into local co-ordinates: 

ac ax, ac 
a',,- ar, ax,' 

or in a matrix notation 

Vrc= JV,c, 

where a subscript is used to indicate the co-ordinates in which the gradient is evaluated and J is 
the Jacobian matrix. The transformation of the gradient from the local to the global co-ordinates 
becomes 

V,C = J - ' V,C. (12) 

The transformation of the artificial diffusion tensor VV in (7) is more subtle. Using the chain rule 
of differentiation, the second derivative in local co-ordinates can be written in global derivatives: 
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Inversion of the fourth-order tensor on the right-hand side of (13) poses computational difficulty. 
However, one can convert the fourth-order tensor into a second-order tensor by writing the 
independent part of the diffusion matrix as a vector. To that end, (13) is rewritten as 

A, = H V, + K A,, (14) 
where 

Note that the zeros in the H-matrix are due to the trilinearity of the element geometry and that 
the K-matrix is readily available once the Jacobian is computed. Finally, the second derivatives 
are expressed in terms of local co-ordinates 

Ax = K - ' (Ar - HV,) = K - ' (Ar- H J - ' Vr) (15) 

using (12). Substituting (12) and (15) into (8), one obtains 

J: J: 1: dpdqdr det( J)(d1cn+' - d z c n ) d l  6c"+ =0, 

j:l J-ll j - l f ( P ,  4, r)dpd4dr= k = 1  j = 1  c i = l  c w i w j w k f ( p i ,  41, r k h  

(16) 

where dl and d2 are now written in terms of local co-ordinate r. The integrals can be evaluated 
by an appropriate numerical integration scheme, for example 

1 n n n  

(17) 

where n is the number of sampling points, (pi, 4i,  r i )  is a sampling point and wi is the weight 
associated with the sampling point. 

4. NUMERICAL EXAMPLES 

In this section the 3D TLS finite element scheme is tested against some example problems. First, 
the scheme is applied to one- and two-dimensional standard reference problems' to validate the 
code and to examine the sensitivity of the different shape functions on the TLS scheme. Then, fully 
three-dimensional example problems are used to test the algorithm. Unfortunately, the authors 
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cannot find standard 3D example problems equivalent to those analysed in lower dimensions. 
Four 3D problems, with or without diffusion, are generated. Some parameters, especially 
initial conditions, flow velocities and diffusion coefficients, are determined such that the 
3D advection-diffusion equation can be solved analytically using the ray 

4.1. Lower-dimensional examples 

The one-dimensional standard problems are advection of a sharp front and of a steep Gaussian 
hill and have been solved accurately using the two-dimensional TLS scheme in our previous 
study.’ For the one-dimensional problems the 3D seredipity Hermite element reduces identically 
to the one-dimensional element used previously and the results are not reported herein. 

The two-dimensional example involves a Gaussian hill in a rotating flow field. In the previous 
study a special non-conforming Hermite triangular elementg was used. Since the 3D serendipity 
element does not reduce to the 2D element when the dependence on the third direction vanishes, 
the result is reported herein as a simple sensitivity analysis of the TLS scheme on the different 
types of elements. The domain used in the 2D example is 

X ,  y E [ - 3200,32001, ZE[-100, loo]. 

Note that an arbitrary thickness in the z-direction has been added to the two dimensional domain 
so that the 3D TLS code can be used. The domain is discretized by 1024 subcubes each of size 
200 x 200 x 200. The rotational flow field is given by 

u = Q( - y, x, O)T, (18) 
where O=n/lOOO. The initial condition is specified by 

c(x, O)=exp ( - x 2 + ( y +  1600)’) 
2a2 , 

where 0=264 and the boundary condition is 

c ( r ,  t )  = 0, (20) 
where r is the inflow boundary. 

A time step of 10 is used and the solution is examined after a full rotation. The solutions at 
z=- 100 and 100 are given in Figure 2. The two results are almost identical, showing no grid 
orientation effects. After one revolution the peak has been reduced to 0-95, indicating additional 
dissipation compared to that of the two-dimensional TLS which resulted in dissipation at the 
peak of about 2%. Nevertheless, the preservation of the symmetry of the hill is very good and the 
hill is still contained within four elements in either the x- or y-direction as in the initial condition. 

4.2. Three-dimensional examples 

The ray method was originally developed6 and extended’, * for high-Peclet-number point source 
problems in an unbounded domain. The method uses an asymptotic technique and solutions are 
generally in the form of infinite series. However, in some limiting cases the ray method yields 
closed-form solutions, i.e. the asymptotic solution terminates within a finite number of terms; in 
fact, only one term. In this study the flow field and the diffusion coefficients are selected such that 
exact analytical solutions can be obtained. The flow field used in this study consists of two 
components: linear shear and uniform translation, i.e. 

u(x) = Rx + v, (21) 



APPLICATION OF TLS TO 3D ADVECTION-DIFFUSION EQUATION 765 

r r 

Figure 2. TLS result for the 2D example (a) at z = 100 and (b) at z = - 100: -, analytical; *, TLS 

where v = ( u x ,  u,, u,)~ is a constant vector representing the uniform flow component and the 
constant shear matrix Cl is 

a= 0 2 1  0 W Z 3  . [: I:: :] 
The non-zero eigenvalues of Cl are 

pL=*J(w12021 - 0 2 3 w 3 2 ) .  (22) 
Depending on the sign of the term under the square root, qualitatively different flow patterns are 
obtained. When the eigenvalues are real, trajectories of flow particles are in the form of 
hyperbolas; and when imaginary, they take on the form of ellipses. The diffusion coefficients used 
in this study are 

0 
(23) 

in which elements are assumed to be constant. In the following examples different combinations 
of (21) and (23)  are used. The ray method yields exact analytical solutions for far more general 
forms of 0 and D than those used in this study. 

The flow field given by (21) can be integrated to yield the expression for the trajectory of a fluid 
particle initially at  xo: 

eP' + e-"' e" - e -M  

2 p  

3 (24) 2 
x ( t )  = at 

- 0 2 1  
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When p is imaginary, the flow field becomes rotational with an angular velocity of ji (= IpI). 
Then (24) reduces at t = 2n/4 to the following: 

.@il Y o  

Therefore, when ux = u, = 0, the flow field becomes periodic regardless of the value of uy. The effect 
of uy is to move the centre of the rotation within the plane of rotation. 

The analytical solution based on the ray method to the N-dimensional advection4iffusion 
equation for the given flow field and the diffusion coefficient is 

c(x, t)=A(t)e-y(x,r), (26) 
where 

A@)=--- 1 (det M(0) det M(t))"' 
( 4 7 p  det S ( t )  , 

S(t) = MTDM dz, 1: 
in which M(t) is any fundamental matrix solution of 

For A2 used in this study the fundamental matrix solution M becomes 

where I is an identity matrix. 
In the remainder of this section, four 3D example problems are presented along with analytical 

solutions. Two of them are pure advection and the other two are advection-diffusion. All 
examples share the same domain and spatial discretization. The domain is a cube of 

xi E [ - 2400,24001, i = 1, 2, 3, 

and is discretized by 243 subcubes of a size 200 x 200 x 200. 

4.2.1. Pure aduection cuse I. The first 3D example is similar to the previous 2D example in that a 
3D Gaussian hill is placed in a 3D rotational flow field. The initial condition is 

c(x,o)=exP(- lx-xo12 2a2 ), 
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where the centre of the hill is initially at xo =(O, 0, - 1000) and a=264. The velocity field is 
specified by the shear matrix 

(30) 

and the uniform flow component 

v = (0.5,0, 0.5)T. (31) 
Boundary conditions 

c ( r ,  t )  = 0 

are used, where r is the inflow boundary. 
The centre of the hill, initially at (0, 0, - low), moves to (1000,0,0) at t = 2000. The spiral-like 

trajectory of the centre of the hill from t = O  to 2000 is given in Figure 3(a). The Gaussian hill 
should remain identical to its initial shape after one revolution since there is no diffusion and the 
flow field has zero rate of strain eij, where 

A total of 200 uniform time steps are used to discretize one period for the TLS scheme. The 
resulting Gaussian hill is spherically symmetrical and the TLS result along with the analytical 
solution are reported in Figure 4. Note that the Gaussian hill is plotted with respect to the radial 
distance. The dissipation at the peak is about 10%. Considering the severity of the initial 
condition (the Gaussian hill reduces from 1 to 0.01 in four elements in all directions), the result is 
very good. Moreover, the spherical symmetry is well preserved as can be seen in the figure. 

The resulting matrix equations (16) are solved by the Orthomin Accelerated Conjugate 
Gradient Solver developed by Sudicky on an IBM 3090 computer using its vector facility. No 
attempt was made to optimize the code; however, CPU times were 1380s for the four-point 
Gaussian elemental integrations, 1800 s for the incomplete LU decomposition and 30 s for the 
back-substitution at  each time step when the code was run in single precision. Note that, owing to 
the steadiness of the flow and the constant time step size, the numerical integrations and the 
decomposition are performed only once. 

(a) (b) (4 
Figure 3. Trajectories of fluid particles for the example problems: (a) first advection case; (b) second advection case; 

(c) second advection4iffusion case; +, starting position 
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4.2.2. Pure aduection case 2. This example, also pure advection of a 3D Gaussian hill, uses the 
same Gaussian hill as was used in the first example. The initial condition centres at (0, - 1200,O). 
The major difference from the first example is in the flow field. The shear matrix is given by 

and a zero uniform flow component is used. Unlike the first case, the rate of strain for this flow 
field is not zero; thus the hill will undergo deformation due to the flow field. The trajectory of the 
centre of the hill, specified by (24), is plotted in Figure 3(b). The flow field is periodic owing to the 
imaginary eigenvalues and the zero uniform flow component. Therefore the deformation during 
the first half of the rotation is exactly opposite that of the second half, so that any distortion of the 
hill is restored to the initial shape. The same boundary condition c = O  is used at inflow nodes. 
Again 200 time steps are used to complete one revolution of the hill. The result is given in 
Figure 5. After one revolution the peak has been reduced by about 14%. The decrease in accuracy 
as compared to the result of the first example is probably due to the non-zero rate of strain. 

4.2.3. Aduectiun-dzflusiun case 1. The first example with diffusion uses the same flow field as the 
first advection example. An isotropic diffusion tensor is selected and is given by 

D = 51, (35) 
where I is the unity matrix. In addition to the usual c = 0 inflow boundary condition, a condition 
of zero normal flux is used at the outflow boundary, i.e. 

v c  n = 0, (36) 

where n is an outward normal vector. 
The ray method gives analytical solutions for point source problems. To obtain an analytical 

solution for the example using the ray method, the initial condition also has to be determined 

0 200 400 600 800 1000 0 200 400 600 800 1000 

r 

00 

r 

Figure 4. Result of first advection example: -, analyt- 
ical; +, TLS 

Figure 5. result of second advection example: -, ana- 
lytical; +, TLS 



APPLICATION OF TLS TO 3D ADVECTION-DIFFUSION EQUATION 769 

1 0 -  

0 8  - 

0.6 - 

using the same method. The ray method assumes that the point source is initially at the origin. 
However, according to the flow field, the origin is on the centre of the rotation. An appropriate 
uniform y-velocity of ,/(2)11/2 is added to the uniform flow field (31) to move the centre of the 
rotation off the origin. The initial condition for the TLS scheme is obtained when the point source 
is diffused enough so that the resulting Gaussian hill can be resolved by the specified grid system. 
As in the advection problems, the initial condition is set so that the reduction of the peak value is 
99% within four elements in any direction. At t =4OOO, or after two rotations, the point source has 
been diffused to a Gaussian hill of the desired steepness. The hill is subsequently normalized by its 
peak value to be used as the initial condition (Figure 6). For the TLS scheme the centre of the hill 
is placed at (0, 0, - 1OOO) to provide the same relative velocity field with respect to the hill. At t = O  
the grid Peclet number, in the x-direction for example, at the centre is about 90, indicating that 
the transport is advection-dominated. A time step of 10 is used for the TLS scheme. The 
comparison between the TLS result after one revolution and the solution from the ray method at 
t = 6000 is given in Figure 7. The ray method has a peak value of 0-54 and the peak of the TLS 
result is 0.50. The dissipation at the peak is about 8% and, as expected, is less than those of the 
advection examples. The spherical symmetry of the TLS result is also very good. 

4.2.4. Advection-dzjiusion case 2. The second advection4iffusion example uses 2D flow with a 
stagnation point. The shear matrix is specified by 

n = p  0 E ,  (37) [: : :] 
in which p = 0.006 and E = E is added to the R-matrix to allow (26) to have a solution. The 
non-zero eigenvalues for the shear matrix are real-valued and, consequently, the flow trajectories 
are hyperbolas with a stagnation point. The uniform flow components are 

v=ps(l, - l ,O)T, (38) 
where s= 2400 and is determined such that the stagnation point is located at (s, -s, 0). A simple 
2D flow is used in this example to help visualize the flow field and to predict the effects on the 

0 8  

0 6  
u 

0.4 

0.2 

0.0 

r r 

Figure 6. Initial condition for first advectiondiffusion Figure 7. Result of first advection4iffusion example: 
example -, analytical; t ,  TLS 
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initial condition. Some trajectories of fluid particles are given in Figure 3(c). Although the flow 
field is two-dimensional, anisotropic diffusion coefficients are used to make the problem fully 
three-dimensional. The diffusion coefficients are 

150 0 
D=[ 150 0 200 :]. (39) 

The ray method is used to obtain an appropriate initial condition by advecting and diffusing a 
point source until the cloud is spread sufficiently. The normalized ray method result at t = 67.5775 
is selected as an initial condition (Figure 8) and the centre of the hill is located at (- 800,800,O) 

1 .o 

0.8 

0.4 

0.2 

0.0 

c 

(b) 
Figure 8. Initial condition for second advection4iffusion 

1.0 - 

0.8 - 

0.6 - 
0 

0.4 - 
0.2 - 
0.0 - . 

0 2 & 4 & &  sira rob0 < 
(4 

example in local co-ordinates (a) 5, (b) 9 and (c) ( 
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- Final Position - 
- - 

- - 

for the TLS. The shape of the initial condition, no longer spherically symmetric, is plotted in local 
co-ordinates <, q and (. The origin of the local co-ordinate system is at the centre of the hill and 
the local co-ordinates 5 and q are defined in the cross-sectional contour plot of the initial 
condition in Figure 9. The cross-section is in the plane z =O. The (-co-ordinate is parallel to the 
z-axis. The initial condition, especially in the q-direction, is extremely steep: the hill decreases to 
less than 1% of its peak in just two elements. 

The ray method result at t = 183.1025 is selected as a final solution and the TLS scheme is 
applied using the initial condition for the duration of 115.525. Twenty uniform time steps are 
used to discretize the simulation time. After the simulation the centre of the hill is located at 
(800, - 800,O). For the given parameters the Peclet number at the centre of the hill is maximum 
at the starting time. The Peclet number in the x-direction varies from 25.6 at t = O  to 12.8 at 
t = 115, which shows more pronounced effects of the diffusion than the first advection4iffusion 
example, but the problem is still advection-dominated. 

The simulation result along with the analytical solution are plotted in local co-ordinates and 
reported in Figure 10. The peak value of the analytical solution is 0.19 while that of the TLS is 
0.205. Unlike any of the previous examples an overshoot of 0-015 is observed. The cross-sectional 
contour plot of the analytical solution in the z = 0 plane is also given in Figure 9. 
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0.2 

0 

0.0 

Figure 10. Result of second advection-diffusion example in local co-ordinates (a) 5, (b) q and (c) c: -, analytical; *, TLS 

5. DISCUSSION 

The accuracy of the TLS scheme has been shown for the one- and two-dimensional 
advection-diffusion equation in our previous study.' In this study the TLS scheme is applied to 
the three-dimensional advection4ffusion equation to demonstrate its accuracy using some 
numerical examples of severe conditions. The serendipity Hermite element is selected as the shape 
function on a linear hexahedral element. The serendipity function has derivative unknowns in 
local co-ordinates, which proves to be advantageous in handling derivative boundary conditions 
without integration by parts. 

The 3D TLS scheme is tested against the 2D example used in the previous study for the purpose 
of, in part, validation of the code and, in part, sensitivity analysis of the scheme on the different 



APPLICATION OF TLS TO 3D ADVECTION-DIFFUSION EQUATION 773 

types of shape functions. In 2D a special non-conforming Hermite shape function on a triangle’ is 
used. Compared to the 2% dissipation of the 2D result, the TLS has about 5% dissipation at the 
peak, indicating that the scheme is rather sensitive to the types of shape functions. 

Four 3D examples are reported in this study. The first two are advection of a steep Gaussian 
hill and the other two are advection4iffusion of a cloud diffused from a point source. For the 
advection problems the steep 3D Gaussian hill is placed in rotating flow fields: one with zero rate 
of strain and the other with non-zero rate of strain. About 10%-14% dissipation at the peaks is 
observed. Considering the severity of the initial condition and the flow field, the results are very 
good. Moreover, the spherical symmetry is well preserved, which indicates excellent phase 
accuracy of the Taylor-least squares scheme. For the advectiondiffusion example the initial 
conditions are obtained by diffusing a point source subject to the constant diffusion tensors and 
predetermined flow field. Then the ray method is used to determine the analytical solutions as 
initial conditions for the examples, which are even steeper than those of the advection examples. 
The hill is contained in just two elements in that its value is less than 1 % of the peak two elements 
away from the centre. The diffusion coefficients are selected such that the grid Peclet numbers 
range from 10 to 90, indicating that the transport is advection-dominated. Deviations of the TLS 
results compared to the analytical solutions are about 8% at the peak in both cases. The error 
compares favourably to that of the advection examples owing to the presence of the well-behaved 
diffusion part. However, it is important to recognize that the initial conditions are steeper than 
those of the advection problems. Therefore direct comparison of the error rates would be unfair. 

The three-dimensional Taylor-least squares finite element method can solve both pure 
advection and advection-diffusion problems well. The scheme provides a viable tool for the 
difficult class of advection-dominated problems. 
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